TECHNICAL DATA SHEET for Single Mode Optical Fiber Cable Type: Central Unitube Armored Cable

A. Features:

- 1) Reasonable design and precise control over the loose-tube fiber in the remainder of a long, fiber optic cable with excellent performance and temperature tensile properties.
- 2) High strength loose tube that is hydrolysis resistant and special tube filling compound ensure a critical protection of fiber. Specially designed compact structure is good at preventing loose tubes from shrinking.
- 3) Specially designed compact structure is good at preventing loose tubes form shrinking.
- 4) Crush resistance and flexibility.
- 5) Two parallel steel wires ensure tensile strength, PE sheath protects cable from ultraviolet radiation.
- 6) Small diameter, light weight and installation friendliness long delivery length.

B. Structure:

The fibers, are positioned in a loose tube made of a high modulus plastic. The tubes are filled with a waterresistant filling compound. Over the tube, water-blocking material is applied to keep the cable watertight. Two parallel steel wires are placed at the two sides of the steel tape. The cable is completed with a Polyethylene (PE) outside sheath.

C. Application:

Long distance and interoffice communication.

D. Laying mode:

Duct, Aerial

E. Technical parameter:

Fiber count (Core)		12	24
Outer diameter (±0.5mm)		7.3	8.1
Loose tube (mm)		2.2	3.0
Steel wire		0.60mmx2	0.60mmx2
Weight (Kg/Km)		50	60
Minimum tensile strength (N)	Short-term	1500	
	Long-term	600	
Crushing (Min) (N/100mm)	Short-term	1000	
	Long-term	300	
Bending radius	Static	10 times of diameter	
	Dynamic	20 times of diameter	
Operating temperature range		-40°C to +60°C	
Storage / Transport temperature range		-50°C to +70°C	

Fiber Color Identification

Unit S.N.	1	2	3	4	5
Fiber S.N.	Blue Tube	Orange Tube	Green Tube	Brown Tube	Natural Filler
1	Blue	Blue	Blue	Blue	N/A
2	Orange	Orange	Orange	Orange	N/A
3	Green	Green	Green	Green	N/A
4	Brown	Brown	Brown	Brown	N/A
5	Slate	Slate	Slate	Slate	N/A
6	White	White	White	White	N/A

The properties of single mode optical fiber (ITU-T Rec. G.652D)

Parameter	Specification	
Fiber type	Single mode G.652D	
Fiber material	Doped silica	
Attenuation coefficient		
@ 1310 nm	≤ 0.36 dB/km	
@ 1383 nm	≤ 0.36 dB/km	
@ 1550 nm	≤ 0.22 dB/km	
@ 1625 nm	≤ 0.30 dB/km	
Point discontinuity	≤ 0.05 dB	
Cable cut-off wavelength	≤ 1260 nm	
Zero-dispersion wavelength	1300 ~ 1324 nm	
Zero-dispersion slope	≤ 0.093 ps/(nm².km)	
Chromatic dispersion		
@ 1288 ~ 1339 nm	≤3.5 ps/(nm. km)	
@ 1271 ~ 1360 nm	≤5.3 ps/(nm. km)	
@ 1550 nm	≤18 ps/(nm. km)	
@ 1625 nm	≤22 ps/(nm. km)	
PMD _Q (Quadrature average*)	≤0.2 ps/km ^{1/2}	
Mode field diameter @ 1310 nm	9.2±0.4 um	
Core/Clad concentricity error	≤ 0.5 um	
Cladding diameter	125.0 ± 0.7 um	
Cladding non-circularity	≤1.0%	
Primary coating diameter	245 ± 10 um	
Proof test level	100 kpsi (=0.69 Gpa), 1%	
Temperature dependence 0°C~ +70°C @ 1310 & 1550nm	≤ 0.1 dB/km	

* PMD_{Q} is a link of 20 cable sections (M) and a probability level of 0.01% (Q).

Main mechanical & environmental characteristics test

NO	ITEM	TEST METHOD	ACCEPTANCE REQUIREMENTS
1	Tensile Strength IEC 794-1-E1	- Load: 6, 000 N - Length of cable under load: 50m	- Loss change \leq 0.1 dB @1550 nm - No fiber break and no sheath damage.
2	Crush Test IEC 60794-1-E3	- Load: 1, 000 N/100mm - Load time: ≥1min	- Loss change \leq 0.1 dB @1550 nm - No fiber break and no sheath damage.
3	Impact Test IEC 60794-1-E4	 Points of impact: 5 Times of per point: 5 Impact energy: 4.5Nm Radius of hammer head: 12.5mm Impact rate: 2sec/cycle 	- Loss change \leq 0.1 dB @1550 nm - No fiber break and no sheath damage.
4	Repeated Bending IEC 60794-1-E6	- Bending Dia.: 20 x OD - Load: 150N - Flexing rate: 3sec/cycle - No. of cycle: 30	- Loss change \leq 0.1 dB @1550 nm - No fiber break and no sheath damage.
5	Torsion IEC 60794-1-E7	- Length: 1m - Load: 150N - Twist rate: 1min/cycle - Twist angle: ±180° - No. of cycle: 10	- Loss change \leq 0.1 dB @1550 nm - No fiber break and no sheath damage.
6	Water Penetration IEC 60794-1-F5B	- Height of water: 1m - Sample length: 3 m - Time: 24 hour	- No water shall have leaked from the opposite end of cable
7	Temperature Cycling IEC 60794-1-F1	- Temperature step: +20°C→-40°C→+60°C →+20°C - Time per each step: 24 hrs - Number of cycle: 2	- Loss change \leq 0.1 dB @1550 nm - No fiber break and no sheath damage.
8	Compound Flow IEC 60794-1-E14	- Sample length: 30 cm - Temp: 70°C ± 2°C - Time: 24 hours	- No compound flow
9	Sheath High Voltage Test	- On line test - 9t KV (t-sheath thickness)	- No sheath breakdown